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Abstract 

Piezoelectric microphones were attached to a top spray fluidized bed to provide valuable 

process signatures. Relationships were developed between sound waves and conditions 

within the fluidized bed to relay critical quality and performance information. Deep 

learning analytics were used to extract valuable information from experimental data. 

Advancements in passive acoustic emissions monitoring will play a key role in 

optimizing pharmaceutical manufacturing pathways to ensure drug quality and 

performance. 
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Chapter 1  

Introduction 

1.1 Research Motivation 

As primary stakeholders in social health care, political administrations must adjust policy 

to reduce prescription drug costs (1). One strategy would be to increase generic drug 

production (2, 3). Generic is a term used to describe drugs that provide the same active, 

dosage, and performance of a brand-name counterpart. They typically enter the 

pharmaceutical market once the equivalent brand-name drug loses its patent. Traditional 

private sector drug manufacturers justify high consumer pricing based on the costly R&D 

process to discover and approve new chemical and biopharmaceutical entities (4). 

Companies that produce generics focus on large scale production rather than innovation. 

The generic drug formulation is already available, and US Food and Drug Administration 

(FDA) approval is prompt. As generics become available, drug prices decrease, and 

health care affordability thrives. Individuals and insurance companies can pay less for 

comparable treatment.  

Unlike brand-name drugs, generic costs are primarily based on long-term manufacturing 

economics. This shift moves process efficiency and process technology to a new level of 

importance. Engineering advancements in process analytical technologies (PAT)s, such 

as passive acoustic monitoring, will play a key role in optimizing manufacturing 

pathways, ensuring product quality, preventing failed batches (rejects, scrap, re-

processing), and increasing automation to reduce human error. Each of these factors will 

contribute to lower manufacturing costs.. 
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1.2 Process Analytics 

With investment historically coupled to the discovery of new blockbuster products, 

advancements in manufacturing efficiency lagged behind modern technological 

capabilities (5). Many drug manufacturing processes run in batches and have little to no 

automation. Batch processing is costly, slow, and leaves room for human error. The FDA 

regulations also require that drug manufacturers submit comprehensive manufacturing 

procedures as part of the drug approval process (6) which undesirably limits continuous 

manufacturing improvement and process evolution as seen in comparable industries.   

In 2004, the FDA’s Center for Drug Evaluation and Research (CDER) released a 

guidance article for the development of PATs. The purpose of a PAT is to monitor 

manufacturing conditions that will have a substantial impact on drug quality (5, 6). A 

successful PAT could reduce manual sampling requirements, or compliment routine 

sampling procedures to improve product quality validation.  

The FDA describes a PAT’s function as at-line, on-line, or in-line. An at-line technology 

requires a pause in the process, removal of sample material, and laboratory analysis. For 

on-line technologies, the process remains operational during sample removal. An in-line 

PAT can conduct measurements without sample removal, or process interruption (6).  

1.3 Modified Dosage Forms 

Relationships discovered through pharmacokinetics in the 1950s subsequently led to the 

development of a series of modified release dosage forms (7). While conventional oral 
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tablets are designed to release the active pharmaceutical ingredient (API) immediately, 

modified release dosage forms control dispersion timing or release rate to accomplish the 

desired therapeutic effect (8). The drug manufacturing process plays a significant role in 

achieving these effects (9).  

Enteric release coatings are a subset of the modified release dosage forms. Drugs coated 

with an enteric release polymer will delay the API’s dissolution until it passes through the 

stomach. An enteric release dosage form will protect APIs that are acid sensitive and 

avoid the risk of stomach irritation from formulation ingredients.  

Sustained release drugs are a second class under modified released dosage forms. These 

are used to extend the liberation of an API over time to reduce drug administration 

frequency. Sustained release coatings control the rate of API diffusion. The diffusion rate 

(dM/dt) can be modeled using Fick’s second law (10) as a representation of the API mass 

transfer: 

𝑑𝑀

𝑑𝑡
=

𝐷𝐴𝐶𝑜

ℎ
                                                                                                                                     1.1 

The variables in this equation are mass (M), time (t), diffusion coefficient (D): dependent 

on the coating material, the surface area of the film (A), the initial concentration of the 

API (Co), and the film coat thickness (h). This representation of mass transfer can 

introduce the importance of film coat uniformity during drug manufacturing. Based on 
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Fick’s second law, the areas of lowest thickness result in higher mass transfer rates; thus, 

reduce the desired sustained-release prosperities.  

1.4 Multi-Particulate Delivery 

Oral multi-particulate drug delivery provides a couple of key advantages over tablet 

dosage forms. With multi-particulate delivery, the small pellets or granules contain the 

API. These pellets are administered using a soft gelatin capsule, and upon release 

disperse within the patient’s gastrointestinal track. This dispersion allows for a more 

predictable gastric emptying rate and reduces the likelihood of dose dumping.  

1.5 Fluidized Bed Coating 

Fluidized beds are used in the pharmaceutical industry to apply functional coatings onto 

multi-particulate systems.  In the standard top-spray fluidized bed configuration, a batch 

of pellets containing the API is placed within a conical vessel. A continuous inlet air 

stream is pressed through a distributor plate located at the base. Upward drag forces of 

the air stream initiate pellet movement. Coating solution is applied using an atomizing 

nozzle located above the pellets while drying occurs in the same chamber. Drug 

manufaturers favor fluidized bed operations for high mass and heat transfer efficiency. 

The pellet movement allows for uniform coating application, and the inlet air provides a 

mechanism for effective heat transfer to dry the coating solution.  

The multivariate nature of simultaneous mixing, mass transfer, and drying increases 

process complexity. Effective fluidized bed operation can be controlled through the 
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manipulation of variables such as: air temperature (To), air velocity (vo), bulk pellet mass 

(m), spray rate (ṁi), spray duration (ti), and period between spray (ts). In practice, the 

control of a fluidized bed is commonly based on operator experience rather than process 

knowledge (11, 12). This reliance on user experience introduces a risk of human error.  

The most critical process parameter in fluidized bed operation is minimum fluidization 

velocity (umf): the lowest inlet air velocity required to overcome the downward force from 

bulk pellet mass (m) within the bed. Below umf, the solid pellets are fixed; however, above 

umf, the bed becomes fluidized. The accepted engineering calculation of umf comes from 

Ergun’s equation (13): 

(𝜌𝑠 − 𝜌𝑔)𝑔 =  
𝜌𝑔𝑢𝑚𝑓

2

𝜙𝐷𝜀3
(

150(1 − 𝜀)𝜇𝑔

𝜙𝐷𝑝𝑢𝑚𝑓𝜌𝑔
+ 1.75)                                                                 (1.2) 

Whereby the variables included are inlet air viscosity (µg), mean particle diameter (Dp), 

the density of the gas (ρg), void fraction with the particle bed (εmf), particle sphericity (ϕ), 

particle density (ρs), and acceleration of gravity (g). 

1.6 Acoustic Emissions 

Interactions inside the chamber during fluidized bed operation generate complex sound 

waves. The passive acoustic emissions will arise from three independent sources. Impact 

sound originates from particle-particle and particle-chamber collisions within the bed. 

Friction sound originates from particle-particle contact as particles pass one another, and 

particle-chamber contact as pellets move adjacent to the fluidized bed walls. 
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Aerodynamic noise arises from turbulence as inlet air passes through the particle bed and 

freeboard (14). Sound waves generated by each of these sources disperse through the 

equipment boundaries. A microphone recording below 40 kHz can detect real-time 

process changes from within the bed (15, 16).  Passive acoustic emissions amplitude and 

frequency will shift in time; thus, providing quantitative variations to extract physical 

meaning. Piezoelectric microphones function by converting acoustic pressure waves into 

electric current. Signals must be amplified and relayed to a data logger before analysis in 

the time domain or frequency domain.   

1.7 Thesis Overview 

The previous work using acoustic monitoring successfully demonstrated feasibility under 

a narrow scope (15, 16). Further work is required to understand how acoustic monitoring 

will be affected under various process conditions. Fluidized bed unit optimization is 

challenging due to the multivariate nature of the fluidized system. This study investigates 

acoustic signals received from pellet coating under variable operating conditions and 

process failure conditions. The experimental data relates acoustic monitoring with 

interactions inside the fluidized bed chamber to form engineering relationships.  

Chapter 2 provides a literature review to introduce aspects of fluidized bed coating and 

the process monitoring methods under evaluation by several research groups. This 

chapter also provides an introduction into the pharmaceutical industry’s manufacturing 

challenges and data analytical methods.  This chapter introduces theory and compares 

work with other authors.  
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Chapter 3 is the first experimental section of this thesis. The work explores the 

application of passive acoustic emissions monitoring as a method to improve temperature 

management during pellet coating. Fluidized beds are often energy-inefficient. An 

improved passive acoustic emissions monitoring and control strategy would support 

manufacturing cost efficiencies and reduce energy waste.  

Chapter 4 provides the second experimental section. This work explores the application 

of passive acoustic emissions as a method to provide early process failure detection. In 

this section, acoustic emissions are analyzed using a deep learning program to classify 

conditions inside the process boundary. The artificial neural network was used to extract 

meaning from a highly complex passive acoustic signal.  

Chapter 5 provides conclusions for the findings presented in this research. Passive 

acoustic emission monitoring can provide a wealth of control data for pharmaceutical 

manufacturers to optimize and improve operations. Advances in deep learning and 

artificial intelligence for multivariate data analytics help simplify the complex task of 

extracting meaning from passive acoustic data. 
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Chapter 2  

Literature Review 

2.1 Fluidized Bed Coating 

2.1.1 Process Overview 

Fluidization is a method of suspending solid particles within a moving gas, liquid, or 

combination of gas and liquid. Upward forces from the mobile phase cause the particles 

to enter a dynamic state. In the pharmaceutical industry, fluidization can be used to 

support the application of spray coatings. Constant particle mixing from a fluidized bed 

enhances spray coating distribution. (1). Fluidized beds used in pellet coating 

applications are typically designed with bottom spray and top spray configurations.  

The bottom spray fluidized beds often use a Wurster column insert (Figure 2.1). The 

Wurster column forces pellets upwards through a central flow pattern while an adjacent 

nozzle applies a coating to pellets passing through the insert. The Wurster configuration 

provides excellent film coating uniformity but increases the risk of attrition from the high 

collision forces as the pellets move upwards through chamber (2 – 4). Attrition will result 

in dose variability between pellets. Significant attrition will result in failed quality 

assurance.  

Top spray fluidized beds use an atomizing spray nozzle located within the freeboard.  

The coating solution is sprayed onto the bed of pellets from above. The surface region 

accepting the coating is called the fluidized bed interface. Particles are continuously 
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recycled at the interface region. The fluidization air moves uncoated particles from the 

bottom of the chamber to the surface, while coated particles drop back into the chamber. 

Continuous mixing within the chamber ensures a uniform coating on all particles. 

 

Figure 2.1 Schematic of a fluidized bed with Wurster column and bottom spray 

configuration 

In 1973, Geldart wrote about the dynamic behavior of fluidized bed systems based on 

particle size and density characteristics (5). Visible behaviors were related to size-

dependent interparticle forces. Today, solid-gas fluidized beds are still described using 

the Geldart classification system. The smallest, 20 to 30 µm Geldart C particles, can be 

challenging to fluidize and are likely to exhibit channeling. The largest, >600 µm Geldart 

D particles, will display a bubbling action; air pockets rise through the bed and gently 
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spout particles into the chamber above upon reaching the bed’s surface. Pellets used in 

pharmaceutical applications usually fall under the Geldart D classification. 

Process control is highly multivariate, and few monitoring tools exist to help operators 

make batch adjustments while the coating is in progress.  Precise control of operating 

conditions ensures consistent product quality. Temperature can be adjusted to improve 

drying rate of the coating solution; however, excessively high temperatures can be un-

economical from an energy standpoint. In some formulations, excessive temperatures 

may also cause drug degradation, inactivation, or damage the coating. Fluidization 

velocity can be increased to break apart agglomerates; however, excessive velocity will 

result in attrition (6). Improvements in PATs will help operators monitor changes inside 

the equipment and provide data to make better real-time decisions. Fluidized beds are 

often more economical than other coating processes, as coating and drying occurs within 

the same chamber. This removes the need for additional downstream drying equipment. 

In pharmaceutical manufacturing, APIs can be coated onto the surface of non-pareils 

pellets such as Suglets® or Cellets®. The pellets are used as a structural surface. Once 

coated with API, the pellets are filled into small gelatin capsules for treatment as a 

multiple unit dosage. The small size and high quantity of the API pellets allows for 

improved gastrointestinal distribution upon ingestion. Drug absorption will improve 

through higher surface contact from multiple pellets. The pellets dispersion will also 

reduce this risk of localized drug leaching should the capsule become physically lodged 

at any set location (7, 8).  Pellet coatings provide pharmacokinetic functionalities, such as 

delayed or modified release.  
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2.1.2 Forces During Coating 

During the spray period, atomized liquid droplets cover the surface of pellets at the 

interface. Particle movement then promotes the spread of coating solution across all 

particles in the bed.  Van der Waals, electrostatic, and liquid bridge forces each play a 

role in particle-particle interactions; however, liquid bridge forces have the greatest 

impact (9, 10). When pellets covered in a liquid film collide, the film at the contact point 

combines to create a liquid bridge. The surface tension caused by the liquid between the 

two pellets provides a bridging force that will hold the pellets together. Agglomeration 

may occur when liquid bridges between small groups of particles dry and solidify. As 

shown in Figure 2.2, agglomerates will reduce film coat uniformity, thus effecting drug 

release rate (11 – 13). High agglomerate formation will also increase the minimum gas 

velocity required to sustain fluidization. 



14 

 

 

Figure 2.2 Non-uniform application of Acryl-EZE coating on 1000 μm glass spheres as 

the result of particle agglomeration 

Drying in a fluidized bed occurs as the surface liquid is removed from the solid particles 

through evaporation. The rate for liquid removal is dependent on system temperature, and 

adjacent vapor concentration. Neglecting kinetic energy, the surface liquid must be 

heated beyond a temperature where vapor pressure exceeds the partial pressure of 

surrounding gas. In a fluidized bed, the surrounding gas is continually being removed and 

replaced in the system. This convective heat transfer decreases the adjacent vapor 

concentration; thus, allowing the drying rate to increase. It can be viewed as the change 

in moisture content (W) versus time (t): 
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𝐷𝑟𝑦𝑖𝑛𝑔 =  
𝑑𝑊

𝑑𝑡
                                                                                                                           (2.1) 

Solid drying is based on two simultaneous mechanisms. The first is heat transfer, which 

initiates liquid evaporation on the surface of the solid. The second mechanism is mass 

transfer, which allows liquid from within the solid to move towards the surface. A linear 

drying stage occurs when the surface of the solid is saturated with liquid. During this 

stage, the drying rate is solely dependent on heat transfer from the surrounding gas to the 

evaporating surface liquid.  

 
𝑑𝑊

𝑑𝑡
=

ℎ𝑡𝐴∆𝑇

𝜆
 𝑜𝑟   𝑘𝑔𝐴∆𝑝                                                                                                        (2.2) 

where the equation variables are total heat transfer coefficient (ht), area for heat transfer 

(A), latent heat of evaporation at reference temperature (λ), difference between system 

temperature and reference temperature (∆T), mass transfer coefficient (kg), and difference 

between vapor pressure of evaporating liquid and partial pressure of liquid in the 

surrounding gas (∆p) (19).  

As drying progresses, the liquid on the surface of the solid decreases. This begins the 

second non-linear stage, where liquid moves from the solids center to the surface for 

removal. During this stage, drying rate is a function of diffusion. As liquid within the 

solid decreases so does the diffusion rate. This drying relationship can consequently be 

modeled using Fick’s second law (14). 
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)                                                                                                           (2.3) 

where the equation variables are the concentration at the liquid-gas interface (c), 

diffusion coefficient (D), concentration in the solid (C) at distance x, and the distance into 

the solid in the direction of diffusion (x) (14). 

In non-porous solids, the liquid remains on the surface as a film. Only the first linear 

drying stage would apply. In pharmaceutical manufacturing, non-porous pellets or porous 

granules may be used in the fluidized bed coating process; thus, the drying profile would 

be dependent on the batch in production. 

2.1.3 Coating Thickness  

The performance of a modified release coating is dependent on variability in coating 

thickness and uniformity (15 – 17).  In 2001 and 2002, Chen and Lee studied the release 

of pharmaceuticals from non-uniform coatings. Their research demonstrated that the 

coating uniformity has a more significant impact to drug release than average coating 

thickness. The thinnest coated area is the primary factor affecting API release rate (15, 

16).  

There has been limited development of real-time monitoring methods to determine 

coating thickness within a fluidized bed. The evaluation of coating thickness usually 

involves timely and invasive sampling. Samples will be evaluated based on mass gain, 

dissolution or near infrared (NIR) spectroscopy to determine the coat quality.  
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2.1.4 Process Stages 

During the coating process, the solvent-solute mixture is atomized by the spray nozzle. 

The droplets fall towards the fluidized bed of pellets. Upon contact, the droplets spread 

across the surface of the pellets to form a film layer.  

During the drying stage, the coating solvent evaporates. The solute remains on the 

surface of the pellets. Fluidized beds allow coating and drying operations to occur within 

the same piece of equipment. Solvent evaporation occurs as the inlet air rushes past the 

fluidized particles. Moisture is released from the surface, captured by the continuous air 

stream, and removed from the system through a filtered exhaust. The thermodynamics 

model of coating and drying has been described by various authors (18 – 22). An early 

publication by Ebey described the coating process under steady-state conditions based on 

first law principles (18). These models can be useful for simple troubleshooting purposes; 

however, engineering models lack the accuracy that could be provided by PAT 

instrumentation. Fluidized bed process control strategies for drug coating applications are 

heavily based on operator experience (22 – 24).  

2.2 Process Monitoring 

The following section is a review of various monitoring approaches used by the 

pharmaceutical industry or under study through the research. The section briefly 

discusses at-line sampling, but primarily focuses on in-line technologies that are capable 

of real-time monitoring. Each method provides a unique approach to capture data. Their 

benefits, and limitations are listed. 
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2.2.1 Periodic Sampling 

Fluidized bed operation is primarily monitored through the removal of at-line samples. 

This activity is time consuming and can be disruptive to the process. The samples 

removed from the bed are used for a range of laboratory testing to assess quality. 

Dissolution testing and NIR spectroscopy from samples are both effective in evaluating 

film coating development (25 – 28). However, both quality evaluation methods require 

too much analysis time for real time process control applications. 

2.2.2 Differential Pressure 

Pressure monitoring has been used as a technique to monitor fluidized bed drying 

performance and changes in pellet flow patterns. The differential pressure across the bed 

is equal to the weight of the bed when the inlet air reaches the minimal fluidization 

velocity (23, 29).   A change in differential pressure from below and above the particle 

bed can be used to indicate a shift in fluidization performance. Increases in air flow 

beyond the minimal fluidization velocity will not provide a noteworthy change in 

differential pressure. Shifts below the minimal fluidization velocity will provide a sharp 

increase in the recorded pressure drop. Briens and Ellis reviewed fluidized bed 

hydrodynamics by monitoring differential pressure while applying chaos analysis and 

wavelet signal processing methods to classify different systems (30). 

Researchers have also studied pressure fluctuation analysis as a method to detect changes 

in the process, such as agglomeration or end-point determination (31 – 34).  These 

changes are abrupt and can be difficult to distinguish from the bubbling action prominent 
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in Geldart D fluidized beds. Fluidized bed pressure monitoring has also been used to 

determine dominant bubble frequencies and relate these frequencies to distributor 

performance (35). Pressure monitoring is straightforward and economical; however, it 

requires the placement of a pressure sensor inside the process boundary. The probe can 

become fouled from the coating solution and will require cleaning between each batch.  

2.2.3 Temperature and Humidity 

Exhaust air temperature and humidity monitoring can be used as a method to evaluate 

fluidized bed drying. Drying progress can be inferred based on changes in these 

variables. A temperature increase and humidity decrease can be used to indicate the bed 

drying rate. Coating passively cools the air stream as the air passes across the pellets and 

flows into the exhaust. The extent that the air is cooled gradually reduces as solvent is 

removed through evaporation. The monitoring method can be used to estimate the end-

point of the drying process (36).  

2.2.4 Near Infrared Spectroscopy 

Near infrared (NIR) spectroscopy has gained widespread attention as a non-destructive 

in-line method to monitor pellet coating performance. NIR spectroscopy applies light 

from 780-2500 nm to probe deep into a sample. A spectrum is recorded using a detector 

placed adjacent to the light source, and individual features within the spectra are linked to 

target chemical compounds (37). NIR light is non-destructive and does not react with any 

contents within the fluidized bed. The monitoring setup requires a continuous NIR 

detector attached to a transparent viewing window. Changes in the recorded spectra are 
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related to coating thickness (38 – 41). Beyond monitoring coating progress, NIR has also 

been employed to track changes in process moisture for fluidized bed granule drying 

applications (42, 43). One issue while using this method is progressive fouling of the 

detector’s window. Buildup of coating solution or residual particulate from the granules 

can block off the detector and significantly reduce monitoring performance. As another 

drawback, the sampling material and measurement environment will affect the NIR 

spectra. Situational calibration is required, which adds complexity while extracting 

process features from the data (38). 

2.2.5 Raman Spectroscopy 

Raman spectroscopy is similar and can be viewed as complementary, to NIR 

spectroscopy. While NIR analysis is based on light absorbance, Raman spectroscopy is 

based on Raman scattering. Changes in molecular vibration are recorded by a detector as 

light enters into the system. The vibrational changes are then related to the composition 

of the sample. Promising research has demonstrated the application of Raman 

spectroscopy in determination of pellet coating thickness while operating a fluidized bed 

(44 – 46). However, the same limitations as NIR spectroscopy apply: the detector 

requires a transparent window into the process, and this window can become fouled and 

significantly reduce production monitoring performance.  

2.2.6 Acoustic Emissions 

Passive acoustic emissions have been investigated as a non-destructive and non-invasive 

monitoring technology for pharmaceutical manufacturing. For fluidized bed coating, 
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acoustic emissions arise from particle-particle collisions, particle-vessel collisions, and 

air flow through the fluidized bed and freeboard (47). Microphones placed outside the 

process boundary can passively detect changes in these acoustics (47 – 51). The current 

challenge is to relate the changes in the acoustic emissions with real-time process 

conditions that will have an impact on product quality.  

Naelapää et al. established the use of passive acoustic emissions as a monitoring tool for 

fluidized bed coating processes.  In their work, potassium chloride crystals were coated 

using ethylcellulose and monitored at a frequency of 16.5 kHz and 50kHz (48). The work 

also helped demonstrate that the higher frequency monitoring outperformed lower 

frequency trials. Tsujimoto et al. studied passive acoustic control for fluidized bed 

applications using very high-frequency elastic waves between 100 kHz - 140 kHz 

recorded with a piezoelectric microphone (47).  Frequencies within this range can 

provide highly localized monitoring data. As a downside, the excessive data generated 

from high frequency recording increased computer processing time requirements which 

reduced applicability in real-time process control. As computers continue to improve, 

data management will become less of a challenge. Daniher et al. evaluated acoustic 

emissions from the exhaust of a granulation process. The research demonstrated that 

passive acoustics from the process exhaust can also provide valuable information 

regarding conditions inside equipment (52). Hansuld et al. further showed that passive 

acoustic emissions from the air exhaust of high-shear granulation processes can be used 

in end-point determination; their studies compared different granule densities and related 

defined endpoints with acoustic emission profiles (52, 53).  
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Sheahan and Briens demonstrated that acoustic monitoring at 40 kHz can be an effective 

way to monitor the fluidized bed coating of glass pellets and a sugar-based coating 

solution (49, 50). Microphones that were placed externally to the fluidized bed were able 

to detect transitions between coating and drying stages of operation effectively. Data 

analyses took place within time-domain windows of reasonable length for process control 

applications. As a limitation, this research worked with a single set of operating 

conditions. Additional work was required to understand how changes in process variables 

will influence the acoustic signals.  

2.3 Manufacturing Challenges 

2.3.1 Process Optimization 

Drug products are highly regulated and must meet strict quality specifications. Quality 

standards are governed by agencies such as the U.S. FDA, Health Canada, or directed 

through Good Manufacturing Practices (GMP) quality systems. Unfortunately, the 

processes used during manufacturing are not always optimized regarding time, energy, 

and cost efficiency. The majority of drug production is still completed using time-

consuming batch manufacturing techniques. In parallel industries, such as food or 

petrochemical processing, much of the product line has transitioned to continuous and 

automated manufacturing. For the pharmaceutical industry to move in the same direction, 

greater control over processes are needed. Improved real-time PATs to monitor physical 

and chemical changes along the production line will give manufacturers more control. 

Improved control will support the development of automation and lower drug 

manufacturing costs.  
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Pharmaceutical Quality by Design (QbD) is a well-established approach to developing an 

effective drug product (55, 56). The plan emphasizes process control and understanding 

every aspect of the drug production to minimize risk and ensure consumer safety. 

Improved PATs fit into the framework of QbD by supporting production sites to monitor 

critical process parameters that are identified by the QbD framework. These process 

parameters have a significant impact on the drug quality; for a fluidized bed coating 

operation, inlet air and product temperatures are examples. At low temperatures, the 

fluidized bed may dry slowly and become unstable as excessive coating layers are added. 

Material agglomeration will occur resulting in non-uniform film layers. In contrast, high 

temperatures will enhance drying, but excessively high temperatures may be detrimental 

to the coating polymer, and over extended manufacturing cycles will be energy wasteful. 

A balance is required. Continued optimization using new PATs would improve the 

manufacturing cycle. The lowest and most energy efficient temperature without the 

formation of agglomerates would be ideal.  

2.3.2 Process Failure 

Enhanced PATs will also be used to prevent process failures. It is not uncommon to 

completely disregard a batch of the finished product as result of failed quality testing. An 

example of a process failure during fluidized bed coating is distributor plate blockage. 

The distributor plate is a perforated plate or mesh located at the base of the fluidized bed 

chamber. Its purpose is to evenly distribute air across the bed to prevent localized 

fluidization or the development of unstable fluidization regimes. Past studies have 

reviewed distributor plate design and performance by analyzing bubble size and radial 
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gas distribution (35, 57, 58).  A distributor plate blockage could occur if the coating 

solution blinds the distributor plate or if excessive agglomerated pellets settle across the 

plate.  

2.4 Data Analytics 

2.4.1 Standard Deviation 

One of the leading reasons why acoustic emissions monitoring is rarely used in 

manufacturing today arises from data analytics. Sound waves recorded from industrial 

processes are very complicated, and it can be immensely challenging to relate features 

within recorded acoustic signals to production conditions inside the targeted operation. 

Previous studies have shown success while using a moving standard deviation filter to 

analyze acoustic data for process control (50). A moving standard deviation can 

mathematically and visually emphasize changes in signal amplitude and frequency while 

remaining in the time domain. Standard deviation measures signal fluctuation away from 

the mean. A moving standard deviation will incorporate leading and lagging points 

within a fixed window to calculate a value representing fluctuation for each data segment. 

Changes in the moving standard deviation over time can subsequently relate back to 

dynamic physical or chemical parameters within the process. 

2.4.2 Multivariate Analysis 

Features within a sound wave can be analyzed simultaneously through a multivariate 

approach. Traditional multivariate methods include principle component analysis (PCA) 
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and partial least squares (PLS) regression. PCA is a statistical method whereby a 

multidimensional data set is transformed into a lower dimensionality space (59). PCA 

evaluates the variance between values to detect dominant patterns. The data can be 

visualized in a two-dimensional plot to select the highest influence principal components. 

For industrial applications, PCA can assist in process upset diagnosis. PLS regression is 

similar to PCA. Rather than plotting data into two-dimensional space, PLS uses two 

independent variable spaces and fits data in one space against the other (60). 

Relationships can be created between each variable space to help understand operating 

conditions in the manufacturing environment (53, 54, 60). 

An emerging method for multivariate data analysis is deep learning. Deep learning is a 

program architecture whereby an input layer of independent data is related to an output 

layer of data using cost function analysis and backpropagation (62, 63). Like PLS, the 

objective is to create relationships between multivariate inputs and one-or-more output 

variables. In deep learning, the input variables are normalized and then passed into a 

hidden layer of nodes. Each node can be activated based on the weight of the previous 

layer. The activation is typically initiated using either a linear rectifier function or a 

probabilistic sigmoid function. Activation determines if the input passes into the 

subsequent layers. If it fails to pass forward, the node has little or no relationship with the 

output. Once the output layer has been reached, a cost function is used to calculate the 

difference between the calculated output value and the real output value for the given 

dataset. The deep learning program then cycles back and adjusts the weights between 

each node to lower the cost function at the end of each cycle. Through this iterative 

backpropagation, the program teaches itself relationships between the input variables and 
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output layer. By using multiple layers of interconnected nodes, the deep learning program 

not only evaluates the relationship between input and output, but also assesses 

interdependent relationships between input variables and how interdependent 

relationships link to the output variable. A multiple layer approach contributes to deep 

learning’s ability to outperform traditional methods of multivariate data analysis, and 

other machine learning architectures (64).  
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Chapter 3  

In-line Acoustic Monitoring to Determine Fluidized Bed 

Performance During Pharmaceutical Coating 

3.1 Introduction 

Fluidized beds are used to coat pellets or granules containing active pharmaceutical 

ingredients. Within a fluidized bed, compressed air is forced into the bottom of a chamber 

containing the pellets. Physical drag forces result in a fluidized movement within the 

chamber. The coating solution is distributed by an atomizing nozzle positioned either 

above or in the pellet bed. Fluidization allows for coating and drying to occur within a 

single unit operation. A fluidized bed provides effective mass and heat transfer; however, 

as a downside, it can be challenging to operate. The multivariate nature of a fluidized unit 

operation can make it challenging to choose optimal process conditions. As suggested by 

the pharmaceutical quality by design (QbD) framework, such operating conditions are 

inlet air temperature, inlet air flow rate, air dew point, atomizing spray rate, total coating 

time, and total drying time (1). Poorly optimized operating conditions can lead to non-

uniform coating, pellet agglomeration, or defluidization; thus, result in unfavorable 

production costs from lost material, energy, and time.  

The conventional method to monitor process quality is at-line sampling, combined with 

weight gain measurement or near infrared spectroscopy (2, 3). Both ways are typically 

too slow to be used for real-time process control. Manufacturers and regulators are 

looking for the development of innovative Process Analytical Technologies (PAT)s to 

monitor fluidized bed conditions that will impact drug quality (4, 5). In 2004, the US 
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FDA released an extensive guidance document on the topic of new PATs. A useful PAT 

would be able to reduce manual sampling requirements or complement regular sampling 

procedures to improve product quality validation or process control.  

Several in-line PATs are concurrently being investigated for fluidized bed application. 

Automated digital imaging was demonstrated as a technology to monitor pellet growth 

(6). High speed images recorded using a light source and optical detector placed inside 

the fluidized bed can be combined with image processing and statistical analysis to 

provide real-time feedback of coating conditions and agglomerate formation inside the 

equipment.  However, imaging techniques require a window or lens into the fluidized 

bed. These windows frequently become fouled by the coating solution and result in 

inaccurate readings. Similar field of view challenges are faced using in-line near-infrared 

spectroscopy (7, 8).  

Microwave resonance technology has been proposed as an option for measuring drying 

rate during fluidized bed granulation (9, 10).  An electromagnetic field is used to adjust 

the dipole moments of water molecules within the fluidized bed. Upon releasing the field, 

a change in energy is detected. The magnitude of this change in system energy can be 

related to the moisture content remaining inside the process equipment.  This method of 

production monitoring is very promising; however, would be expensive to implement 

relative to the other techniques discussed.  

Naelapää et al. demonstrated the extraction of process information from passive acoustic 

emissions recorded during fluidized bed coating of potassium chloride crystals with 

ethylcellulose. Although the data did not fully support their hypothesis, the trials 
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established a possibility for passive acoustic emissions monitoring in fluidized bed 

process control applications.  Naelapää et al. further recommended that acoustic detectors 

with an upper frequency of 16.5 kHz were less effective than detectors with a high 

frequency of 50 kHz (11). Tsujimoto et al. studied in-line monitoring of high-frequency 

elastic waves between 100 kHz - 140 kHz for pharmaceutical fluidized bed applications 

(12).  Investigation at these frequencies can provide the benefit of highly localized 

monitoring data; however, prolonged continuous recording at high frequencies will result 

in excessive data generation and computer processing requirements.  

Sheahan and Briens recently studied passive acoustic emissions monitoring at 40 kHz 

while coating glass pellets in a fluidized bed (13, 14). This feasibility study demonstrated 

that microphones placed external to a fluidized bed can effectively detect transitions 

between coating and drying stages of operation. The research provided insight towards 

the application of passive acoustic emissions monitoring in pharmaceutical 

manufacturing; however, was limited to a single set of operating conditions. Additional 

research is required to build upon this feasibility study and understand how adjusting 

process variables (such as fluidization air temperature or aqueous coating material) will 

affect the passive acoustic emissions recordings. 

The current study was designed to build upon Sheahan and Briens feasibility studies, and 

further investigate changes in passive acoustic emissions during fluidized bed coating. It 

was understood that application of a coating would degrade the fluidized bed 

hydrodynamics, and thus should affect the sound waves generated during pellet 

collisions. Drying would subsequently reverse these changes in bed hydrodynamics. 

Changes in the process between independent coating trials at three temperatures (20oC, 



39 

 

40oC, and 56oC) were considered to determine the effects on the acoustic emissions. It 

was hypothesized that increasing the bed temperature would increase the drying rate of 

the wet coated pellets and that this controlled change would be detected in the passive 

acoustic emissions. The rate of signal change could then be extracted as a validation of 

drying efficiency. 

3.2 Materials and Methods 

3.2.1 Pellets 

Spherical 1000 μm glass pellets were used for the experiments. These pellets were used 

as a model for pharmaceutical pellets such as Cellets® or Suglets®. Glass pellets are 

reusable, experience low friability, and provide similar shape and diameter as 

pharmaceutical pellets; however, they have a higher density (2400 kg/m3) than Suglets® 

(2043 kg/m3) and Cellets® (1800 kg/m3). Various pellet models will influence the sound 

amplitude and frequency; however, the fundamental signal trends should remain the 

same. Batch size for each fluidized bed trial was 2 kg. 

3.2.2 Coating Material 

A 5% (w/w) sugar water solution was used in the initial coating trials. Sugar-based 

coatings can be applied in drug manufacturing to mask API taste. A 5% (w/w) Acryl-

EZE® water solution was also used to compare against the sugar coating trials. Functional 

polymer coatings, such as Acryl-EZE®, are frequently used to adjust release profiles. 

3.2.3 Fluidized bed 
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The pellets were fluidized in a conical top spray fluidized bed. Figure 3.2 illustrates the 

equipment and its dimensions. Compressed air was passed through a Dutch weave 

distributor plate at the base of the bed into the pellet chamber. Four bag filter exhaust 

outlets were located at the top of the chamber. Relative air humidity remained near 9%. 

The superficial gas velocity throughout the fluidized bed was regulated to 1.7 m/s (3.1x  

the minimum fluidization velocity). Fluidization air temperature was set to either 20oC, 

40oC, or 56oC using a t-type process air heater. 

 

Figure 3.1 Schematic of the fluidized bed identifying microphone placement 

3.2.4 Coating Process 

An atomizing spray nozzle (John Brooks Company 1/8 PRJJB 0.0390) was inserted 0.56 

m above the distributor plate. The pellets were sprayed four times with the coating 
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solution for two-minute intervals during the 80-minute process. A total of 208 ml of 

coating solution was applied at a rate of 26 mL/min during each trial. The bed remained 

fluidized between coating applications to allow for adequate pellet drying. The length of 

each drying stage was predetermined through prior experiments. Without adequate drying 

time, excessive coating buildup resulted in bed defluidization. The drying stages 

increased from 6, 12, 16, and finally 26 minutes during each trial. 

3.2.5 Data Acquisition 

A PCB Piezotronics 130D10 microphone with attached 130P10 preamplifier was placed 

within the exhaust. The microphone recorded at a rate of 40 kHz. This allowed for 

analysis within the audible below 20 kHz. For data acquisition, a 16-bit National 

Instruments DAQCard-6036E was used. Signal processing was completed in MATLAB 

R2016b.  

3.2.6 Drying Tunnel 

250 g samples of the glass pellets were mixed with either a 5% (w/w) sugar water 

solution or 5% (w/w) Acryl-EZE® water solution and placed in a drying tunnel at 

specified temperatures (20oC, 40oC, and 56oC). The change in mass of the pellets over 

time was recorded to determine drying rates. These drying rates were compared to 

information obtained from the passive acoustic emissions from the fluidized bed 

3.2.7 Flow Analysis 

A Mercury Scientific Revolution Powder Analyzer was used to measure the changes in 

flowability of glass beads coated in either 5% (w/w) sugar water or 5% (w/w) Acryl-
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EZE® water solution between 0-20% moisture content. Avalanche time was calculated 

based on an average of 50 measured data points. Shorter avalanche times indicate higher 

bulk flowability.  

3.2.8 Coefficient of Restitution 

The coefficient of restitution was measured to highlight the changes in elastic energy 

between three states: clean uncoated pellets, wet coated pellets, and coated pellets that 

have been fully dried. The measurement method was similar to that used by Muller et al. 

(15). A piezoelectric microphone was attached to the surface of a horizontal metal plate. 

The pellets were dropped into a free fall and bounced on the plate until coming to rest. 

Each impact was recorded using the microphone. The ratio of time between successive 

rebounds was used to determine the coefficient of restitution at clean, wet coated, and dry 

coated states. 

3.3 Results 

3.3.1 Coating Process 

Visual observations from the viewing window of the bed verified that the pellets 

remained fluidized. The fluidization profile could be described as spouted, with distinct 

air pockets moving vertically through the pellets. Samples were removed following the 

40oC trials and imaged using a Hitachi S-4500 field emission scanning electron 

microscope at 3.00 kV. Samples were coated with gold to enhance conductivity before 

imaging.  These images, as shown in Figure 3.2, validated that a film was successfully 

applied and coated the pellets during the 80-minute trial. 
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Figure 3.2 Scanning electron microscope images of pellets without coating (A), with 

sugar coating (B), and with Acryl-EZE® coating (C)  

3.3.2 Passive Acoustic Emissions 

Acoustic emissions were analyzed in MATLAB R2016b. Figure 3.3 shows the raw data 

during a coating trial at 40oC.  
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Figure 3.3 Unfiltered acoustic emissions during Acryl-EZE® coating trial at 40oC. The 

vertical grey bars identify each two-minute spray coating stage  

As shown in Figure 3.4, a moving standard deviation filter was applied to enhance 

changes in the data. To reduce signal noise, a Savistzky-Golay filter was applied to the 

remaining data set. During each spraying stage, the standard deviation of the signal 

increased by approximately 40 mV. During the drying stages, the standard deviation of 

the signal decreased linearly. 
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Figure 3.4 Standard deviation (σ) of acoustic emissions during sugar coating trials at 

20oC (A), 40oC (B), and 56oC (C).  

It was observed that the rate of signal change (dσ/dt) during the drying stages was higher 

while operating at higher temperatures. As shown in Figure 3.4, the passive acoustic 

emissions during drying at 20oC changed by an average rate of - 1.17 mV/min (R2 = 

0.49), while the signals during the 40oC and 56oC trials changed at - 4.99 mV/min (R2 = 

0.95), and - 7.52 mV/min (R2 = 0.91) respectively. 
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Figure 3.5 shows the drying rates of 250 g glass bead samples coated in a 5% (w/w) sugar 

water solution, as measured independently in a drying tunnel. The change in moisture 

concerning time (dM/dt) was highest at 56oC, lower at 40oC and substantially lower at 

20oC at rates of - 0.034 wt%/min, - 0.12 wt%/min, and - 0.189 wt%/min respectively. 

These rates were comparable with the fluidized bed recovery as measured using passive 

acoustic emissions as shown in Figure 3.6.  

 

Figure 3.5 Drying curve glass pellets observed in a drying tunnel at 20oC, 40oC, and 

56oC after being coated in a 5% (w/w) sugar water solution 
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Figure 3.6 Acoustic signal change during each drying stage of sugar coating trials at 

compared against drying rate observed in a drying tunnel 

In the final trial, an aqueous Acryl-EZE® polymer coating was applied onto the glass 

pellets at 40oC. The data was compared with the sugar coating trial at the same 

temperature as shown in Figure 3.7. The rate of signal change (dσ/dt) during each of the 

drying stages were similar: - 5.57 mV/min (R2 = 0.95) for the Acryl-EZE® coating 

compared to - 4.99 mV/min (R2 = 0.95) for the sugar coating.  



48 

 

 

Figure 3.7 Standard deviation (σ) of acoustic emissions during fluidized bed sugar 

coating trial at 40oC (A) and Acryl-EZE® coating trial at 40oC (B). 

The comparable trends between sugar coating and Acryl-EZE® coating were supported 

using independent drying, flowability, and coefficient of restitution data. Figure 3.8 

shows that pellets coated in either sugar or Acryl-EZE® experienced similar drying 

profiles inside a controlled drying tunnel environment. Figure 3.9 shows that pellets 

coated in either sugar or Acryl-EZE® underwent similar flowability changes based on 

avalanche data at various moisture contents. Figure 3.10 shows that pellets coated in 

either sugar or Acryl-EZE® underwent similar changes in their coefficients of restitution 

when coated. 
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Figure 3. 8 Drying curve for glass pellets observed in a drying tunnel at 40oC after being 

coated in either 5% (w/w) sugar water or 5% (w/w) Acryl-EZE® water 

 

Figure 3.9 Flowability of pellets measured as avalanche time (seconds) between 0 – 20% 

moisture content coated in either 5% (w/w) sugar water or 5% (w/w) Acryl-EZE® 

solutions  
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Figure 3.10 Coefficient of restitution recorded from clean uncoated pellets, wet coated 

pellets, and coated pellets that have been thoroughly dried using both 5% (w/w) sugar 

water or 5% (w/w) Acryl-EZE® solutions 

3.4 Discussion 

Passive acoustic emissions from fluidization are classified based on three independent 

sources (15). Impact sound originates from particle-particle and particle-chamber 

collisions within the bed. Friction sound arises from particle-particle contact as they pass 

one another. Aerodynamic sound originates from air movement. Sound waves generated 

by each of these sources disperse through the equipment boundaries. Sheahan and Briens 

previously demonstrated that a piezoelectric microphone recording at 40 kHz can detect 

real-time changes from within the fluidized bed (13, 14). Further research was required to 

build upon their feasibility study and demonstrate how PAE monitoring can be linked to 

specific process variables. 

The moving standard deviation of the PAEs increased by 40 mV during each coating 

stage and then decreased during each drying stage (Figure 3.4). As the pellets dry, the 
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elastic properties of all pellets within the fluidized bed become uniform and acoustic 

variability decreases.  Higher operating temperatures increase the vapor pressure of the 

liquid film on the pellet surfaces. This increases the driving force for drying. The changes 

in drying rate were monitored using the passive acoustic emissions. At higher 

temperatures, the signal recovered at a faster rate: - 1.17 mV/min at 20oC, - 4.99 mV/min 

at 40oC, and - 7.52 mV/min at 56oC.  

Figure 3.4A shows that the standard deviation of the acoustic emissions for the trial at 

20oC did not wholly recover during the drying phase to the pre-spray level. The 

fluidization air temperature was too low to dry the coating effectively. Based on visual 

observation, approximately 20% of the pellets had formed into agglomerates ranging 

from 0.5 – 5 cm diameter at the end of the 20oC trial. Very few agglomerates were found 

during the 40oC and 56oC trials. However, higher temperatures are less economical from 

a process energy management standpoint. Excessively heating the fluidization air stream 

for extending drying periods isn’t cost-effective or environmentally considerate. The 

methods presented in this research to monitor production using passive acoustics could, 

in practice, support determination of an optimal drying temperature: high enough to 

prevent defluidization, and low enough to conserve energy. 

Figure 3.7 compares the monitoring results from a trial using sugar-based coating against 

a trial using Acryl-EZE® coating. The coating volume and spray pattern were identical in 

each trial. The PAE monitoring results were similar: an increase during spraying 

(reflecting higher cohesivity of the wet pellets and their nonuniform distribution in the 

bed) followed by a decrease during drying (as the pellets dry to improve fluidization 

quality). The increase in the standard deviation was approximately the same for both 
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coating solutions. The rate of decrease was also similar for both solutions. The findings 

were supported from the independent drying measurements (Figure 3.8), flowability 

measurements (Figure 3.9), and coefficient of restitution data (Figure 3.10).  

The coefficient of restitution for a pellet decreases as it is covered with a wet solution 

(Figure 3.10). The collisions between wet pellets are less elastic, resulting in energy 

dissipation. This dissipated energy decreases the energy transmitted to the microphone, 

resulting in lower amplitude of measured acoustics. As the coating solution is applied, the 

top layer of pellets becomes wet, while the pellets lower in the bed remain dry until 

adequate mixing occurs. There is an initial distribution of pellets with varying amounts of 

coating.  The wet coating solution: (a) adds some mass to a pellet thereby slightly 

reducing its velocity within the bed; the energy transferred with a collision may be 

affected depending on the ratio of mass added versus velocity reduced which affects the 

energy recorded by a microphone (b) increases the cohesivity of the pellets such that 

pellet agglomerates with more mass but less velocity may form; this change in particulate 

properties can affect the energy recorded from collisions (c) reduces the coefficient of 

restitution as the coating solution makes the collision less elastic, lowering the energies 

recorded by a microphone.  

 5. Conclusions 

This research investigated passive acoustic emissions monitoring for fluidized bed pellet 

coating processes. First, this study verified that distinct shifts in passive acoustic 

emissions could differentiate between coating and drying stages inside the fluidized bed. 

Second, this study identified that changes in drying rate (controlled by fluidizing air 
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temperature) can be extracted from the acoustic emissions. And finally, it was observed 

that acoustic emission profiles were similar while using different coating solutions.  

Due the complexity of the system, uncontrolled variables may have played a secondary 

role influencing the microphone signal. As example, filter blockage from coting droplets 

that rise upwards into the exhaust would gradually shield the microphone from acoustic 

emissions in the chamber. These uncontrolled interactions were considered minor 

experimental uncertainties and are not expected to have played a significant role in the 

drying trends extracted from the acoustic data. 

Overall, extracted information from passive acoustic emissions can contribute to the real-

time monitoring strategy of a fluidized bed pellet coating process. A more comprehensive 

monitoring strategy would aid in reliable identification of process disruptions. 

Parameters, such as air temperature, can then be quickly adjusted to recover and regain 

optimal operation. This non-intrusive monitoring method is robust, adaptable, and can 

easily be implemented with various manufacturing systems.  
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Chapter 4 

An Application of Deep Learning to Detect Process Upset during 

Pharmaceutical Manufacturing using Passive Acoustic Emissions 

4.1 Introduction 

4.1.1 Fluidized Bed Blockage 

Within a fluidized bed, air is introduced through a distributor plate located at the bottom 

of a conical chamber. The moving air is used to continuously mix and dry material that 

has been placed inside the chamber.  Past studies have related distributor plate design to 

bubble size and radial gas distribution as an assessment of fluidization quality (1, 2). 

Recently, Wormsbecker and Pugsley studied fluidized bed pressure changes through 

spectral analysis to determine dominant bubble frequencies and subsequently related 

these frequencies to distributor plate performance for granule drying (3).  Common 

distributor plate designs include perforated plates, punched plates, or Dutch weave plates.  

The relatively small bubbles formed by Dutch weave distributor plates exhibit higher risk 

of defluidization while operating at low air velocities (3). 

During fluidized bed pellet coating applications, distributor plate blockage can occur 

between the coating and drying stages. For example, agglomerated pellets can settle on 

the distributor plate or the distributor plate can become blinded by the coating solution. 

As the aqueous coating solution is applied to the bed, small liquid bridges form between 

pellets. If the kinetic energy provided by fluidization is inadequate, and the liquid bridge 

between two pellets solidifies, an agglomerate will form (4). The agglomerated pellets 
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require larger upward forces to remain fluidized and tend to settle onto the distributor 

plate. If multiple pellets settle along one edge of the distributor plate, the significant 

blockage will begin to shift inlet airflow to the opposite side and increase the likelihood 

of additional agglomerate formation in the void space above the blockage.  On the other 

hand, a blinding of the distributor plate will occur under conditions of excessive spray 

and inadequate drying. As coating solution is applied to the bed, a fraction of the spray 

will build up along the walls of the chamber. This build-up of excess solution will tend to 

drip down the wall and blind off the distributor plate in an annular pattern along its edges. 

This blinding gradually moves towards the center of the distributor plate. Both blockage 

patterns will have a substantial impact on product quality. Inconsistent hydrodynamics 

between batches will result in product variability. Failed quality assurance will lead to 

lost material and higher operating costs. 

4.1.2 Passive Acoustic Emissions 

Passive acoustic emission monitoring has shown potential as a technology to monitor the 

fluidized bed coating processes. Sheehan and Briens demonstrated that signals recorded 

using piezoelectric microphones attached to the wall and placed within the air exhaust of 

a fluidized bed during coating application can provide distinct signal shifts that 

correspond to physical process changes (5,6). These microphones actively record acoustic 

emissions within the audible range and can act as a basis for the development of process 

analytical techniques to improve control. Further work is required to expand on this 

feasibility study. Research is needed to understand how undesirable process failures will 

affect the acoustic signals, and if control strategies can be developed based on 
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information obtained from the passive acoustics.  Difficulty in extracting valuable 

process information is one explanation to why acoustic monitoring remains uncommon in 

industry today (7). With advances in computer processing, the analysis of high frequency 

data sets over extended study times is no longer a challenge.  

4.1.3 Deep Learning 

Deep learning was a topic of interest through the 1980s; however, limitations in 

computing diminished any widespread societal or industrial adoption (8, 9, 10). 

Breakthroughs in parallel processing within the last decade have started to revive the 

study. This sudden revival has led to the development of highly efficient artificial 

intelligence computing systems that are capable of multivariate data manipulation. Deep 

neural networks have been proven to solve extreme data problems, such as classifying 

features within images (8, 9) or discovering genetic determinants of disease (10).   

A deep learning program is modeled after the human brain. The network receives raw 

input data that is analogous to our sensory neurons. The network then processes this data 

through a “hidden layer” that determines the data’s significance.  The program can be 

trained to classify and make decisions regarding future inputs based on its prior learning.  

For the present study, experiments were developed to simulate various fluidized bed 

distributor plate blockages. Segmented and annular shaped blockages were introduced 

while acoustic emissions were recorded.  As the blockage increased, the air velocity into 

the bed consequently increased. It was hypothesized that, at higher air velocities, the 
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pellet-pellet and pellet-wall impact energy would increase, thus affecting the acoustic 

emissions being recorded. The experiments used both 1000 μm diameter glass pellets and 

1000 μm Suglets® pellets to assess the effect of pellet density. 

4.2 Materials and Methods 

4.2.1 Fluidized bed 

Pellets were fluidized inside a top spray fluidized bed as shown in Figure 4.1. 

Microphones were placed inside an exhaust filter and securely attached externally onto 

the wall of the conical chamber.  

 

Figure 4.1 Fluidized bed schematic identifying microphone placement 
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A large glass viewing window allowed for visual observations of bed dynamics during 

each trial. The distributor plate had a Dutch weave design allowing air to flow through 

small curved triangles between the mesh. The Dutch weave design provides high radial 

dispersion of very small bubbles but can be more susceptible to localized defluidization 

while operating at low flowrates (3). This drawback suggested that the Dutch weave 

distributor plate design would be relevant for distributor plate blockage studies. 

4.2.2 Pellets 

Spherical 1000 μm Suglets® and 1000 μm glass pellets were used for the experiments. 

Suglets® (2043 kg/m3) are small sugar spheres commonly used as non-pareil particles in 

drug manufacturing processes. Glass pellets (2400 kg/m3) of the same size were used as a 

model to compare the effect of pellet density. The glass pellets are consistent in 

sphericity and do not experience any friability inside the chamber. Fluidization air flow 

into the bed was set to 0.028 m3s-1 for trials using Suglets® pellets. To achieve a 

comparable Geldart D fluidization profile (11) using glass pellets, air flowrate was 

increased to 0.032 m3s-1. The relationship was determined by pellet density, Ergun’s 

equation for fluid flow through packed columns (12), and Wen’s correlation to 

approximate voidage (13). 

4.2.3 Distributor Plate Obstruction 

For each experiment, sections of the distributor plate were blocked off using high 

strength tape as shown in Figures 4.2 and 4.3. The corresponding changes in gas velocity 

entering the bed are also indicated. The segmented blockage was designed to simulate the 
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accumulation of agglomerated pellets on the plate. The annular blockage was intended to 

simulate blinding of the plate by the coating solution. 

 

Figure 4.2 Segmented distributor plate blockage patterns with blockage area and air 

velocity 

 

Figure 4.3 Annular distributor plate blockage patterns with blockage area and air 

velocity 
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4.2.4 Passive Acoustic Data Acquisition 

Piezoelectric microphones were placed within the exhaust and securely attached 

externally to the wall of the fluidized bed chamber. The wall microphone was located 

away from the segmented blockages on the opposite side of the chamber. All passive 

acoustic emissions were recorded at 40 kHz to support the constrains of Nyquist 

sampling theorem while analyzing the signal inside the limits of audible range 

frequencies. MATLAB and Python were used offline for signal filtering and analysis.  

4.2.5 Deep Learning 

The artificial neural network was designed to classify upset conditions from a bulk data 

array of audio feature vectors.  No prior knowledge was required concerning the 

importance of the individual features; instead, the network’s purpose was to look at all 

features and distinguish their significance through parallel cost function evaluation and 

back propagation. The 34 time and frequency domain vectors were extracted using 

pyAudioAnalysis open source library (14). The bulk extraction included features such as 

zero crossing rate, energy, spectral flux, and mel-frequency cepstral coefficients which 

are typically used by the deep learning community for voice or music classification. 

The network’s design was completed in Python using the Theano library (15) for efficient 

computations. TensorFlowTM (16) was used to run the deep learning application with the 

support of the Keras (17) library for efficient coding. The network was composed of one 

input layer, two hidden layers, and one output layer. The input layer contained 34 feature 

vectors which were extracted from 0.25 second segments of the acoustic emissions. Each 
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of the two hidden layers included 22 nodes which were activated using the rectifier 

function. The output layer contained 7 nodes that corresponded to the 6 blockage 

conditions, and the unblocked reference condition (Figure 4.4). The output layer was 

activated using the SoftMax function. Backpropagation took place using 100 epochs 

based on initial model optimization.  

 

Figure 4.4 Deep learning schematic identifying inputs, outputs, and hidden layers 
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4.3 Results 

Blockages were simulated by actively covering areas of the distributor plate. The 

project’s success depended on the artificial neural network’s ability to classify each 

increasing blockage size within reasonable accuracy. It was observed through the viewing 

window that pellet velocity and bed hydrodynamics shifted during each trial.  As the 

blockage increased, pellets spouted higher into the freeboard.   

Each independent recording was cut into 240 equal segments of 0.25 second length and 

analyzed using pyAudioAnalysis for short-term time and frequency domain feature 

extraction. The feature vectors were combined into a data set and labelled by 

corresponding blockage condition. The data set was split into a training group and test 

group. Data was analyzed independently for the two blockage types, two microphones, 

and two pellet materials (Figures 4.5 – 4.7).  

Figure 4.5 shows the glass pellet prediction results in an error matrix. Most of the 

artificial neural network predictions fell on the correct classification, with incorrect 

predictions typically falling to neighboring blockage sizes. Just 0.17% of the predictions 

at the maximum blockage size provided a false-negative outcome. Figure 4.6 shows the 

Suglets® sugar pellet results in an error matrix.  
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Figure 4.5 Error matrix of test set predictions for glass pellets 
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Figure 4.6 Error matrix of test set predictions for sugar pellets 
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The lower density sugar pellets provided similar monitoring results as the glass. In Figure 

4.6, the contrasting performance between the exhaust and wall microphones becomes 

more visible. The exhaust microphone’s error rate was highest during small blockage 

sizes but improved as blockage size increased. Figure 4.7 shows the accuracy results 

using 10-fold cross validation.  

 

Figure 4.7 Deep learning evaluation using 10-fold cross validation accuracy for each 

material and blockage condition 

Mean accuracy for the wall microphone was notably higher (82.7%) than mean accuracy 

for the exhaust microphone (65.8%). Accuracy for the glass pellets and sugar pellets were 

similar. 
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4.4 Discussion 

The acoustic emissions from a fluidized bed process can be attributed to three sources: 

particle-particle collisions, particle-vessel collisions, and air flow through the bed and 

freeboard (18). Each of the three sources can be measured by either of the two 

microphones used during the experiments; however, air flow is believed to be the 

dominant source of passive acoustic emissions measured by the exhaust microphone 

while particle-wall collisions are believed to be the dominant source of passive acoustic 

emissions measured by the wall microphone. Figure 4.8 shows the observed fluidized bed 

behaviors focusing on the spouting or ejection of pellets into the freeboard.  

 

Figure 4.8 Visual observations of pellet spout as distributor plate blockage increased 

Without blockage, the spout was centrally located and reached a height of about 0.2 m 

above the bed surface. The pellets from the spout fell back to the bed in a radial and 
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uniform pattern.  As the annular blockage was introduced, the spout remained 

approximately centered in the bed. Defluidized zones that started from an outer annulus 

grew inward as the blockage increased. Due to the conical shape of the vessel combined 

with the circular flow pattern of the pellets, the effect of pellet velocities and their 

collisions with the vessel walls was complex. As the segmented blockage was introduced, 

the spout location shifted to the freely flowing space opposite to the blockage. With the 

radial change in spout location, a greater number of the ejected pellets collided with the 

vessel wall. 

Higher velocities resulted in higher impact energies from the pellets spouting and falling 

against the sides of the chamber. This increase in impact energy subsequently affected the 

sound waves that were generated by each collision. As shown in Figures 4.5 and 4.6, the 

artificial neural network was able to use the passive acoustic emissions to reliably 

classify the blockage size using the wall microphone for annular and segmented blockage 

patterns.  

The artificial neural network provided accurate blockage classification through the 

evaluation of 34 signal feature vectors that were extracted from each passive acoustic 

segment using pyAudioAnalysis. The network architecture contained multiple hidden 

layers of 22 nodes which assessed the relationships between feature and blockage 

classification, as well as the interdependent relationships between multiple features and 

blockage classification. This multivariate analysis was proven to be effective in 

predicting current blockage conditions inside the fluidized bed; however, in its current 

form is unable to indicate which of the 34 features is most important. A downside to 



70 

 

including hidden layers within the deep learning architecture is reduced transparency. 

The most dominate features or interdependent feature relationships remain unknown. A 

recent study evaluated the application of a parallel neural network to expose the hidden 

layers (19). Applying such methods to passive acoustic monitoring may be studied in 

future work. Selecting only dominant features for analysis would further reduce the 

computation requirements during in-line process control applications.  

Figures 4.7 shows that the wall microphone was more effective for process control 

applications. The wall microphone provided 16.9% higher mean accuracy across all 

trials. The wall microphone is completely non-invasive when attached onto the exterior 

of the fluidized bed chamber. It has no interactions with materials inside the process 

boundary, making it ideal for pharmaceutical manufacturing environments. The exhaust 

microphone rests in a less ideal location as it can be exposed to process residual exiting 

the chamber. Depending on the application, the exhaust microphone may be impractical 

or require additional cleaning. The exhaust microphone recordings are expected to be 

more dependent on aerodynamic acoustic emissions developed from air passing through 

the chamber. Changes in the air flow path may alter the frequency and amplitude of 

sound waves that exit the exhaust.  

As shown in Figures 4.5 to 4.7, the higher density glass pellets provided similar 

performance as the lower density Suglets®. It was originally hypothesized that the 

Suglets® would not perform as well as glass pellets because the lower density Suglets® 

release less energy upon impact. The data suggests that acoustic monitoring is robust and 
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can be applied to various cases in pharmaceutical, petrochemical, agriculture, or food 

processing industries. 

Through completion of this research, it was determined that passive acoustic emissions 

can detect distributor plate blockages. As the magnitude of the distributor plate blockage 

increased, features within the sound waves changed. These small changes were 

effectively identified using an artificial neural network. Distributor plate blockage 

resulted in a higher range of pellet velocities. This shift in hydrodynamics subsequently 

resulted in a shift in passive acoustic emissions recorded by the microphones. The deep 

learning architecture successfully evaluated short-term time and frequency domain 

variations from a signal that could be used in real-time process control application.  

4.5 Conclusions 

The passive acoustic emissions monitoring combined with deep learning analytics proved 

to be effective for use in a process control application. In pharmaceutical manufacturing 

environments, a microphone placement outside the process boundary is ideal for 

operational control applications. Acoustic monitoring provides no risk of product 

contamination and can be a highly cost-effective solution to deter process failure. Passive 

sound waves created from industrious environments provide a wealth of untapped 

information. Deep learning in turn provides us with a new way to extract value from the 

sound. Without a doubt, the ease by which early artificial intelligence programs can 

decipher sound will play an active role in advancing industrial passive acoustic 

monitoring within the next decade. 
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Chapter 5  

Conclusions 

New process analytical technologies will drive continuous improvement in the 

pharmaceutical manufacturing space. PATs provide greater understanding of conditions 

within the manufacturing environment and provide control over product quality. Under 

the QbD framework, our ability to understand every aspect of the manufacturing process 

reduces product safety risks and improves pharmaceutic outcomes. From an economic 

view, new PATs will reduce operating cost by strengthening automation, and supporting 

manufacturing optimization. 

The objective of this work was to evaluate passive acoustic emissions monitoring as a 

PAT for fluidized bed coating. Previous research has established that passive acoustic 

emissions can be used to detect changes in a fluidized bed process; however further 

research was required in understanding how process conditions, or unwanted process 

events (such as distributor plate blockage) will affect the acoustic emissions.   

Acoustic emissions are highly complex. The integration of deep learning for multivariate 

data analysis in Chapter 4 applied a modern data workflow to extract meaning from the 

data. The results not only demonstrated the performance of passive acoustic emissions 

monitoring, but also demonstrated the effectiveness of deep learning for data analysis in 

process control applications. The artificial neural network was able to study the 

experimental data, learn patterns within the experimental data, and then accurately 
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predict process conditions based on independent data. Deep learning to enhance process 

control will reduce the risk of human error.  

Passive acoustic emissions monitoring provides no risk of product contamination as the 

microphones are located outside the process boundary. The monitoring is non-destructive 

and highly cost-effective. Sound waves created from manufacturing environments 

provide a wealth of untapped information. At the same time, deep learning provides us a 

way to extract meaning from the sound. 
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Appendix A 

Python Code used for Deep Learning Model 

# Deep Learning applied to Passive Acoustic Emissions after feature extraction from 

PyAudioAnalysis 

 

# Install Theano 

# Install Tensorflow 

# Install Keras 

 

# Part 1 - Data Preprocessing 

 

# Import libraries 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

 

# Import dataset 

dataset = pd.read_csv(‘input_from_PyAudioAnalysis.csv') 

X = dataset.iloc[:, 0:34].values 

y = dataset.iloc[:, 34].values 

 

# Split dataset into the Training set and Test set 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) 

 

# Feature Scaling 

from sklearn.preprocessing import StandardScaler 

sc = StandardScaler() 

X_train = sc.fit_transform(X_train) 

X_test = sc.transform(X_test) 

 

 

# Part 2 - Build Deep Learning Model 

 

# Import Keras library and packages 

import keras 

from keras.models import Sequential 

from keras.layers import Dense 

 

# Initialising the ANN 

classifier = Sequential() 

 

# Adding the input layer and the first hidden layer 

classifier.add(Dense(units = 22, kernel_initializer = 'uniform', activation = 'relu', input_dim = 34)) 

 

# Adding the second hidden layer 

classifier.add(Dense(units = 22, kernel_initializer = 'uniform', activation = 'relu')) 
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# Adding the output layer 

classifier.add(Dense(units = 7, kernel_initializer = 'uniform', activation = 'softmax')) 

 

# Compiling the ANN 

classifier.compile(optimizer = 'adam', loss = 'sparse_categorical_crossentropy', metrics = 

['accuracy']) 

 

# Fitting the ANN to the Training set 

classifier.fit(X_train, y_train, batch_size = 10, epochs = 100) 

 

 

# Part 3 - Making predictions and evaluating the model 

 

# Predicting the Test set results 

y_pred = classifier.predict(X_test) 

np.savetxt("y_pred.csv", y_pred, delimiter=",") 

 

# Making the Confusion Matrix 

from sklearn.metrics import confusion_matrix 

y_pred_rev = pd.read_csv('y_pred_rev.csv') 

cm = confusion_matrix(y_test, y_pred_rev) 

 

 

# Part 4 – Evaluate model using k-fold cross validation 

 

# Evaluating the ANN 

from keras.wrappers.scikit_learn import KerasClassifier 

from sklearn.model_selection import cross_val_score 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.layers import Dropout 

def build_classifier(): 

    classifier = Sequential() 

    classifier.add(Dense(units = 22, kernel_initializer = 'uniform', activation = 'relu', input_dim = 

34)) 

    classifier.add(Dropout(0.1)) 

    classifier.add(Dense(units = 22, kernel_initializer = 'uniform', activation = 'relu')) 

    classifier.add(Dropout(0.1)) 

    classifier.add(Dense(units = 7, kernel_initializer = 'uniform', activation = 'softmax')) 

    classifier.compile(optimizer = 'adam', loss = 'sparse_categorical_crossentropy', metrics = 

['accuracy']) 

    return classifier 

classifier = KerasClassifier(build_fn = build_classifier, batch_size = 10, epochs = 500,) 

accuracies = cross_val_score(estimator = classifier, X = X_train, y = y_train, cv = 2) 

mean = accuracies.mean() 

variance = accuracies.std() 
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